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What is a Random Matrix?

Definition. A random matrix is a matrix whose entries are random
variables, not necessarily independent.

A random matrix in captivity:

0.0000 -1.3077 —1.3499 0.2050 0.0000 |
1.8339 0.0000 -1.3077 0.0000 0.2050
—2.2588 1.8339 0.0000 -1.3077 —1.3499
2.7694 0.0000 1.8339 0.0000 -1.3077
0.0000 2.7694 —2.2588 1.8339 0.0000

What do we want to understand?

8 Eigenvalues & Singular values 8. Operator norms
:a Eigenvectors & Singular vectors L

Sources: Muirhead 1982; Mehta 2004; Nica & Speicher 2006; Bai & Silverstein 2010; Vershynin 2010; Tao 2011; Kemp 2013; Tropp 2015; ...
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Random Matrices in Statistics

John Wishart

3. Multi-vardate Distribution. Uss of Quadratic co-ordinates.

A comparison of equation (8) with the corresponding results (1) and (2) for
uni-variate and bi-variate sampling, respectively, indicates the form the general
result may be expected to take. In fact, we have for the simultaneous distribution
in random samples of the n variances (squared standard deviations) and the

n____(n2— D product moment coefficients the following expression :
A, A4,..4, 11;_1
Ay Ay ... A,
dp = Am A”...Aﬁ.
—Tnk-0) L N-1 —3 —n
m P( 2 )F( 2 )P( 2 )
X 6- Ao - Anan— .. ~ Ay Opa—2413019~ 34,305 ... =24y 1400
Ay (g ... Gyp N-’Lg
o F Y0 P TR ),
N A . .
where ap, = 858,75, and Ap, =g =B, A being the determinant
gp0g A

Pl 2, 4=1,2,8,...n,
and A,, the minor of p,, in A.

:a- Sample covariance matrix for the multivariate normal distribution

Sources: Wishart, Biometrika 1928. Photo from apprendre-math. info.
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Random Matrices in Numerical Linear Algebra

now combining (8.6) and (8.7) we obtain our desired result:

(7’1’1«) n~1/26—rn1‘.1/26n . 2»——2

Prob (N > 2¢%rn) <
" (r — )n

( 2r )” . 1
et 4(r — 1)(rmn)l/2

We sum up in the following theorem:

(8.8)

(8.9) The probability that the upper bound lA] of the matrix 4
of (8.1) exceeds 2.720n'? is less than .027X2-"»~12, that is, with
probability greater than 999, the upper bound of 4 is less than
2.720n'? for n=2, 3, - - -.

This follows at once by taking » =3.70.

John von Neumann

8- Model for floating-point errors in LU decomposition

Sources: von Neumann & Goldstine, Bull. AMS 1947 and Proc. AMS 1951. Photo ©IAS Archive.
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Random Matrices in Nuclear Physics

Random sign symmetric matrix

The matrices to be considered are 2N + 1 dimensional real symmetric matrices;
N is a very large number. The diagonal elements of these matrices are zero,
the non diagonal elements v;, = v.; = =0 have all the same absolute value but
random signs. There are | = 2¥V*¥*Y guch matrices. We shall calculate, after
an introductory remark, the averages of (H")y and hence the strength function
S'(x) = o(z). This has, in the present case, a second interpretation: it also
gives the density of the characteristic values of these matrices. This will be
shown first.

Eugene Wigner

8 Model for the Hamiltonian of a heavy atom in a slow nuclear reaction

Sources: Wigner, Ann. Math. 1955. Photo from Nobel Foundation.

Joel A. Tropp (Caltech), Applied RMT, Mathematics Colloquium, Warwick, 31 May 2019



Classical RMT
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Wigner (d = 7) Distribution of eigenvalues (d = 10°)

8 Highly symmetric models
& \ery precise results
8 Strong resonances with other fields of mathematics
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Contemporary Applications of RMT

& Numerical linear algebra :8 Learning theory

8 Numerical analysis 8 Mathematical signal processing
8 Uncertainty quantification 8 Optimization

8 High-dimensional statistics 8. Computer graphics and vision
& Econometrics & Quantum information theory
8 Approximation theory 8 Theory of algorithms

8 Sampling theory 8 Combinatorics

& Machine learning 2 O

Sources: (Drawn at random, nonuniformly) Halko et al. 2011; March & Biros 2014; Constantine & Gleich 2015; Koltchinskii 2011; Chen &
Christensen 2013; Cohen et al. 2013; Bass & Groechenig 2013; Djolonga et al. 2013; Lopez-Paz et al. 2014; Fornasier et al. 2012; Morvant et
al. 2012; Chen et al. 2014; Cheung et al. 2012; Chen et al. 2014; Holevo 2012; Harvey & Olver 2014; Cohen et al. 2014; Oliveira 2014.

Per Google Scholar, over 33,900 papers with key “Random Matrix Theory.”
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Contemporary RMT

(0 0 0 00O OO 0 1 1 1 1
O 0 0o 01 1.1.10 0 00
O 011 0 01 1 0 O 1 1

0 1 0 1 0 1 0 1 0 1 0 1

| (sample random columns)
O 0 0 0O 01 1 1
O 0 1 1 1 O 1 1
O 1 0 0 1 1 0 1
1 0 01 1 0 O O

8 Wide range of examples, many data-driven
& Results may sacrifice precision for applicability
& Theory is still developing
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Thesis Statement

Modern applications demand
new random matrix models
and new analytical tools

Joel A. Tropp (Caltech), Applied RMT, Mathematics Colloquium, Warwick, 31 May 2019
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Matrix Concentration

8 Goal: For a random matrix Z, find probabilistic bounds for

|1 Z-EZ|

& An upper bound on this quantity ensures that

e8¢ Singular values of Z and E Z are close

& Singular vectors of Z and [ Z are close (for isolated singular values)
« Linear functionals of Z and E Z are close

8- Spectral norm of Z is controlled: | Z|| = |[EZ|| £ || Z-EZ||

I-Il = spectral norm = largest singular value = ¢, operator norm
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The Independent Sum Model

Z = Zk Sk

with Sy independent

Useful observation: EZ =), ES;
Exercise: Express the sample covariance matrix in this model
Exercise: Express column sampling (with replacement) from a fixed matrix
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The Bernstein Inequality

Fact 1 (Bernstein 1920s). Suppose

@ §1,8,,83,... are independent real random variables

:a Each one is centered: ES; =0
:a Each one is bounded: |Si| < L

Then, for t > 0,
) eV r<ul/L
e 'L t>p/L

P{> (S|t} =<
where the variance proxy is

v :Var(ZkSk) = ZkIESi

Sources: Bernstein 1927; Boucheron et al. 2013.
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The Matrix Bernstein Inequality |

Theorem 2 (T 2011). Suppose

@ §,,8,,83,... are independent random matrices with dimension d, x d
:a FEach one is centered: ES;. =0
:a- Each one is bounded: ||Si|| < L

Then, for t > 0,

e~V r<vyl/L
"D{”ZkSk”Zt} = (di+dy)- el >yl (c=3/8)

where the matrix variance proxy is

v = max{[|}_ E(SkSy)

|2 ESiSO}

)

Sources: Tomczak-Jaegermann 1973; Lust-Piquard 1986; Pisier 1998; Rudelson 1999; Ahlswede & Winter 2002; Junge & Xu 2003, 2008;
Rudelson & Vershynin 2005; Gross 2011; Recht 2011; Oliveira 2011; Tropp 2011-2015.
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The Matrix Bernstein Inequality ||

Theorem 3 (T 2011). Suppose

@ §,,8,,83,... are independent random matrices with dimension d, x d,
:a Fach one is centered: ES;. =0
8. Each one is bounded: ||Si|| < L

Then

1
EY, S| = \/2v-log(d1+d2)+§L-log(d1+d2)

where the matrix variance proxy is

v=max{|)_  E(ScS;)

|2 ESiSO}

)

Sources: Tomczak-Jaegermann 1973; Lust-Piquard 1986; Pisier 1998; Rudelson 1999; Ahlswede & Winter 2002; Junge & Xu 2003, 2008;
Rudelson & Vershynin 2005; Gross 2011; Recht 2011; Oliveira 2011; Tropp 2011-2015.

Joel A. Tropp (Caltech), Applied RMT, Mathematics Colloquium, Warwick, 31 May 2019



Example: Matrix Sparsification

=W N -

O B~ IV

© O W
0 B

12 16

4 3
3 6 9 12

12 16

8 Goal: Find a sparse matrix A for which || A — A|| is small

8. Approach: Non-uniform randomized sampling

Sources: Achlioptas & McSherry 2001, 2007; Arora et al. 2006; d'Asprémont 2008; Gittens & Tropp 2009; Nguyen et al. 2009; Drineas &
Zouzias 2011; Achlioptas et al. 2013; Kundu & Drineas 2014; Tropp 2015.
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Sparsification: Sampling Model

‘8 Let A be afixed d; x d> matrix
¢ Construct a probability mass {p; ;} on the matrix indices
8 Define a 1-sparse random matrix § where

ai;i
S = _]Eij with probability Pij
Pij

& The random matrix S is an unbiased estimator for A

aij
[ES:Zijp—ijEij'pij :ZijaijEij:A

& To reduce the variance, average r independent copies of S
u 1
A = _22—1 S where S; ~S
- Lk=

¢« By construction, A, has at most r nonzero entries and approximates A
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Sparsification: Analysis

o8 Recall: S = (al]/pl])El] Wlth prObab|l|ty pl]

& Bound for spectral norm:

IS—ES| <2-max i/
tj Pij
‘& Bound for variance:
[ la;il?) a;;|?
ES-ES)(S—ES)*| < |ESS*| =) .[Y .——|E,;;|| = max) . —
| JESS"| = | X, |, 5| = may, 52
* * ( |aij|2\ |al]|2
Es-£97(s-E9)] < eS| = | X, X, % | B | = maxy,

\ Pij | J Pij

¢a. Construct probability mass p;; o |a;;| + |a; J-I2 to control all terms

Joel A. Tropp (Caltech), Applied RMT, Mathematics Colloquium, Warwick, 31 May 2019 18



Sparsification: Result

Proposition 4 (Kundu & Drineas 2014; T 2015). Suppose
r = e “-srank(A) -max{d,, d»}log(d, + dy) OD<e<l)

Then the relative error in the r-sparse approximation A, satisfies

EIA- Al _
[V —
The stable rank ,
A
srank(A) := ::A::z < rank(A)

& The proof is an immediate consequence of matrix Bernstein

Joel A. Tropp (Caltech), Applied RMT, Mathematics Colloquium, Warwick, 31 May 2019
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Application: Fast Laplacian Solvers

Theorem 5 (IKyng & Sachdeva 2016). Suppose

& (G is a weighted, undirected graph with n vertices and m edges
8 L is the combinatorial Laplacian of the graph G

Then, with high probability, the SPARSECHOLESKY algorithm produces

:a. A lower-triangular matrix C with O (m) nonzero entries that satisfies

1
§L< CC* <

L

N | w

¢8 The running time is O (m)

In particular, we can solve Lx = b to machine precision in time O (m)

Joel A. Tropp (Caltech), Applied RMT, Mathematics Colloquium, Warwick, 31 May 2019
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SPARSECHOLESKY for a Graph Laplacian

a u*
L= — Ly—al uu® Subtract rank-1
u L2
nxn
1 (n-1)x(n-1)
X
— Ly—a'|x X Sparsify rank-1
X
1 (n-1x(n-1)

:&. Direct computation of Cholesky factorization requires O (1n*) operations per step
8 Randomized approximation in O(m/n) operations per step (amortized)

8 Sampling probabilities are computed using graph theory

& Analysis depends on Bernstein inequality for matrix martingales!

Sources: Pisier & Xu 1997; Junge & Xu 2003, 2008; Oliveira 2011; Tropp 2011; Kyng & Sachdeva 2016.
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A Virtuous Cycle

Models — Theory

N\ /
Applications

Joel A. Tropp (Caltech), Applied RMT, Mathematics Colloquium, Warwick, 31 May 2019
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Contact & Papers

email: jtropp@cms.caltech.edu
web: http://users.cms.caltech.edu/~jtropp

Monograph:

@ An Introduction to Matrix Concentration Inequalities. Found. Trends Mach. Learn., 2015. Preprint: arXiv:1501.01571

Papers:

@ “User-friendly tail bounds for sums of random matrices.” FoCM, 2011

@ “User-friendly tail bounds for matrix martingales.” Caltech ACM Report 2011-01

@ “Freedman’ inequality for matrix martingales.” ECP, 2011

@ “From the joint convexity of relative entropy to a concavity theorem of Lieb.” PAMS, 2012

@ “Improved analysis of the subsampled randomized Hadamard transform.” AADA, 2011

@ “The masked sample covariance estimator” with R. Chen & A. Gittens. /&I, 2012

@ “Tail bounds for all eigenvalues of a sum of random matrices” with A. Gittens. Caltech ACM Report 2014-02
@ “Matrix concentration inequalities via the method of exchangeable pairs” with L. Mackey et al. Ann. Probab., 2014
@ “Subadditivity of matrix ¢-entropy and concentration of random matrices” with R. Chen. EJP, 2014

@ “Efron-Stein inequalities for random matrices” with D. Paulin & L. Mackey. Ann. Probab., 2016

: “Second-order matrix concentration inequalities.” ACHA, 2016

8 “The expected norm of a sum of independent random matrices: An elementary approach,” HDP 7, 2016
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