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Outline

§ 1:00–1:30 pm. Fourier ptychography and scalable SDP algorithms

§ 1:35–2:20 pm. Nonlinear SDPs via SKETCHYCGM

§ 2:30–3:15 pm. Standard-form SDPs via SKETCHYCGAL
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Fourier.
Ptychography
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Microscopy: Field of View / Resolution

×2 FOV

1 mm

×20 objective (0.4 NA) ×2 objective (0.08 NA)

×20 FOV

10 µm 10 µm 

© 2013 Macmillan Publishers Limited.  All rights reserved. 

Source: Adapted from Zhang et al. 2013.
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Fourier Ptychography: Field of View + Resolution

Sources: Zhang et al. 2013; Horstmeyer & Yang 2014; Ou et al. 2014; Horstmeyer et al. 2015.
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Fourier Ptychography: Malaria Example

−→

phase
2 µm—

x gradient

y gradient

Source: Yurtsever et al. 2017.
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Fourier Ptychography: Schematic

−→

Source: Adapted from Horstmeyer & Yang 2014.
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Fourier Ptychography: Reconstruction

§ Acquire a family of noisy measurements:

bi = |〈a i , ψ〉|2+ξi for i = 1, . . . ,d

§ a i ∈Cn are known measurement vectors that model FP system
§ ψ ∈Cn is the unknown sample transmission function
§ ξi ∈R is unknown noise

§ Reconstruction via unconstrained optimization:

minimize
x∈Cn

d∑
i=1

loss
(|〈a i , x〉|2; bi

)
§ Assume loss(·; b) is a convex function

§ Malaria example: n = 25600 and d = 185600

Sources: Zhang et al. 2013; Horstmeyer & Yang 2014; Horstmeyer et al. 2015.
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Fourier Ptychography: Convex Reconstruction

§ Observe: |〈a, x〉|2 = a∗(x x∗)a = a∗X a where X is rank-one, psd

§ Lift to matrix optimization problem:

minimize
X∈Hn

d∑
i=1

loss
(
a∗

i X a i ; bi

)
subject to rank(X ) = 1; X psd

§ Replace rank constraint with trace constraint to obtain convex problem:

minimize
X∈Hn

d∑
i=1

loss
(
a∗

i X a i ; bi

)
subject to trace(X ) =α; X psd

§ Return maximum eigenvector x? of a solution X ?

§ Malaria example: Matrix X has n2 = 6.55 ·108 real dof

Sources: AIM Frames Workshop 2008; Edidin et al. 2009; Chai et al. 2011; Candès et al. 2013; Horstmeyer et al. 2015.
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Convexity: Why Bother?

Wirtinger Flow Burer–Monteiro ???
(not convex) (sort of convex) (convex)

X = Y Y ∗

images of x phase gradient

Challenge: How to solve the convex ptychography problem at scale?

Sources: Burer & Monteiro 2003; Candès et al. 2014; Horstmeyer et al. 2015; Yurtsever et al. 2017.
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Nonlinear SDP with.
Optimal Storage
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Convex Low-Rank Matrix Optimization

minimize f (A X ) subject to X ∈α∆n (SDP-nl)

§ A :Hn →Rd is a real-linear map
§ f :Rd →R is convex and continuously differentiable
§ ∆n := {X ∈H+

n : trace X = 1} = density matrices

§ In many applications,
§ A extracts d linear measurements of n ×n matrix
§ f = loss( · ;b) for data b ∈Rd

§ d ¿ n2

§ α modulates rank of solution

§ Models problems in signal processing, statistics, and machine learning
(e.g., convex ptychography)

Hn = n ×n Hermitian matrices; H+
n = n ×n psd matrices
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Approximate Solutions

§ Let X ? be an optimal point of (SDP-nl)
§ Algorithms produce a feasible point X that is ε-suboptimal:

f (A X )− f (A X ?) ≤ ε

§ Smoothness: Distance to optimal point controls suboptimality:

f (A X )− f (A X ?) ≤ L ‖X −X ?‖∗
§ Stability: Suboptimality controls distance to (unique) optimum:

f (A X )− f (A X ?) ≥ κ‖X −X ?‖∗
§ Smoothness + Stability: Suboptimality comparable with distance to optimum

§ Assume smoothness + stability to simplify guarantees

‖·‖∗ = Schatten 1-norm = dual of `2 operator norm = trace norm
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Low-Rank Approximation of a Solution

§ NP-hard to solve (SDP-nl) + rank X ≤ r

§ Legerdemain: Find a rank-r approximation X̂ of a solution to (SDP-nl):

‖X̂ −X ?‖∗ ≤ const · ‖X ?−�X ?�r‖∗
§ In particular, if rank(X ?) ≤ r , then X̂ = X ?

§ Goal: Compute a rank-r approximation X̂ to an ε-suboptimal point X ε:

‖X̂ −X ε‖∗ ≤ const · ‖X ε−�X ε�r‖∗
§ Assume smoothness + stability + rank(X ?) ≤ r

§ Conclude
‖X̂ −X ?‖∗ ³ f (A X )− f (A X ?) ³ ε

�·�r = a best rank-r approximation with respect to ‖·‖∗
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Optimal Storage

What kind of storage bounds can we hope for?

§ Assume black-box implementation of operations with linear map:

u 7→A (uu∗) (u, z) 7→ (A ∗z)u

Cn →Rd Cn ×Rd →Cn

§ NeedΘ(n +d) storage for output of black-box operations

§ NeedΘ(r n) storage for rank-r approximation to a solution

Definition. An algorithm for the nonlinear SDP (SDP-nl) has
optimal storage if its working storage isΘ(d + r n) rather thanΘ(n2).

Source: Yurtsever et al. 2017; Cevher et al. 2017.
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So Many Algorithms...

§ 1990s: Interior-point methods
§ Storage costΘ(n4) for Hessian

§ 2000s: Convex first-order methods
§ (Accelerated) proximal gradient, spectral bundle methods, and others
§ Store matrix variableΘ(n2); projection onto constraint set via SVD

§ 2008–Present: Storage-efficient convex first-order methods
§ Conditional gradient method (CGM), entropic mirror descent (EMD), and extensions
§ Store matrix with rank O (tn); no storage guarantees

§ 2009–Present: Nonconvex heuristics
§ Burer–Monteiro factorization idea + various nonlinear programming methods
§ Store low-rank matrix factorsΘ(r n)
§ For Burer–Monteiro, necessary that rank r =Ω(

p
d) + extra assumptions

§ Other nonconvex methods frame unrealistic + unverifiable statistical assumptions

Sources: Interior-point: Nemirovski & Nesterov 1994; ... First-order: Rockafellar 1976; Helmberg & Rendl 1997; Auslender & Teboulle 2006; ...
CGM: Frank & Wolfe 1956; Levitin & Poljak 1967; Jaggi 2013; Baes et al. 2013; ... Heuristics: Homer & Peinado 1997; Burer & Monteiro 2003;
Keshavan et al. 2009; Jain et al. 2012; Candès et al. 2014; Bhojanapalli et al. 2015; Boumal et al. 2016; Cifuentes & Moitra 2019; ....
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The Challenge

§ Some algorithms provably solve the model problem...

§ Some algorithms have optimal storage guarantees...

Is there a practical algorithm
that provably computes

a low-rank approximation
to a solution of the nonlinear SDP
+ has optimal storage guarantees?
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SketchyCGM
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Geometry of Conditional Gradient

∆n

{Y : g (Y ) ≤ g (X )}

−∇g (X )

X

uu∗ = H

X +

H = arg max
Y ∈∆n

〈
Y , −∇g (X )

〉
X + = (1−η)X +ηH

min
X∈∆n

g (X )

∆n = {X ∈H+
n : trace X = 1}
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CGM for the Nonlinear SDP

Input: Problem data
Output: Approximate solution X cgm ∈α∆n

1 function CGM
2 X ← 0n×n . Initialize matrix variable
3 for t ← 0,1,2,3, . . . do
4 η← 2/(t +2) . Step size schedule
5 u ← MinEvec(A ∗(∇ f (A X ))) . Eigenvector computation
6 H ←−αuu∗ . Form update direction
7 X ← (1−η)X +ηH . Linear update to matrix variable
8 return X

Comment: In notation of last slide, g = f ◦A . The gradient ∇g =A ∗ ◦∇ f ◦A .

Sources: Frank & Wolfe 1956; Levitin & Poljak 1967; Jones 1992; DeVore & Temlyakov 1996; Hazan 2008; Clarkson 2010; Jaggi 2013.
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Convergence of CGM

Fact 1 (CGM: Convergence Rate). Let X ? be an arbitrary solution to the nonlinear
SDP (SDP-nl). For each iteration t ≥ 0, the matrix X t constructed by CGM satisfies

f (A X t )− f (A X ?) ≤ 2C

2+ t
.

The constantC reflects the curvature of the objective and size of the domain.

§ CGM behavior depends on curvature of objective
§ Objective values converge at rate O (1/t )!
§ Extension: Computable stopping criterion (omitted)
§ Extension: Works with very approximate eigenvalue calculations

Source: Frank & Wolfe 1956; Levitin & Poljak 1967; Hazan 2008; Clarkson 2010; Jaggi 2013; ....
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Randomized Lanczos

§ Lanczos efficiently minimizes the Rayleigh quotient of M ∈Hn over

span
{
ω, Mω, M 2ω, . . . , M qω

}
§ Uses q matrix–vector products with M

§ Can be implemented with storageΘ(n)!
§ Randomization: Draw test vectorω∼ NORMAL(0,In)

Fact 2 (Randomized Lanczos). Fix M ∈Hn . For ε ∈ (0,1] and δ ∈ (0,0.5],
randomized Lanczos returns a unit vector u ∈Cn with

u∗Mu ≤λmin(M)+ 1
8ε‖M‖ with probability≥ 1−2δ

whenever q ≥ 1
2 +ε−1/2 log(n/δ2).

§ Outcome: Implement CGM via RandLanczos with qt =O (t 1/2 logn)

Sources: Kuczyński & Woźniakowski 1992; Arora et al. 2005; Tropp 2017–2021; Jaggi 2013; Yurtsever et al. 2017–2021; ....
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Crisis / Opportunity

Crisis:

§ CGM needs many iterations to converge to a near-low-rank solution
§ The numerical rank of the CGM iterates can increase without bound
§ CGM requires high + unpredictable storage

Opportunity:

§ Modify CGM to work with optimal storage!
§ Drive the CGM iteration with small “state” variable z =A X

§ Use primitives to access linear map A
§ Maintain small randomized sketch of primal matrix variable X

§ After iteration terminates, reconstruct matrix variable X from sketch

Source: Yurtsever et al. 2017–2021.
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CGM for the Nonlinear SDP

Input: Problem data
Output: Approximate solution X cgm ∈α∆n

1 function CGM
2 X ← 0n×n . Initialize matrix variable
3 for t ← 0,1,2,3, . . . do
4 η← 2/(t +2) . Step size schedule
5 u ← MinEvec(A ∗(∇ f (A X ))) . Eigenvector computation
6 H ←−αuu∗ . Form update direction
7 X ← (1−η)X +ηH . Linear update to matrix variable
8 return X

Sources: Frank & Wolfe 1956; Levitin & Poljak 1967; Jones 1992; DeVore & Temlyakov 1996; Hazan 2008; Clarkson 2010; Jaggi 2013.
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State Formulation of CGM

Input: Problem data
Output: Approximate solution state z cgm =A X cgm ∈Rd

1 function STATECGM
2 z ← 0d . Initialize state variable
3 for t ← 0,1,2,3, . . . do
4 η← 2/(t +2)
5 u ← AppMinEvec(A ∗(∇ f (z))) . RandLanczos via A ∗ primitive
6 h ←A (−αuu∗) . State update via A primitive
7 z ← (1−η)z +ηh . Linear update to state variable
8 return z

Benefit: Only uses storageΘ(n +d)!
Problem: Where do we get X cgm?
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Sketching the Decision Variable

§ Idea: Maintain small sketch of primal variable X !
§ Fix target rank r of solution, and draw Gaussian dimension reduction map

Ω ∈Cn×k where k = 2r

§ Sketch takes the form
Y = XΩ ∈Cn×k

§ Can perform linear update X ← (1−η)X +ηH by operating on sketch:

Y ← (1−η)Y +ηHΩ (Recall: H = uu∗)
§ Can compute provably good rank-r approximation X̂ from sketch:

X̂ = �Y (Ω∗Y )†Y ∗�r (truncated Nyström)

§ Sketch uses additional storageΘ(r n)!

Sources: Nyström 1930; Williams & Seeger 2001; Drineas & Mahoney 2005; Woolfe et al. 2008; Clarkson & Woodruff 2009; Halko et
al. 2009; Gittens 2011, 2013; Tropp et al. 2017–2021; ....
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Guarantees for Reconstruction

Theorem 3 (Nyström Sketch). The Nyström Sketch has reconstruction guarantee

E‖X − X̂ ‖∗ ≤ 2 ‖X −�X �r‖∗

§ If the sketch contains a matrix X with a good low-rank approximation, then the
reconstruction X̂ is also a good low-rank approximation of X

§ Similar bounds hold with high probability
§ Larger sketches reduce error (k = ζr )

§ Improvements when X has spectral decay
§ Extension: Shift X̂ so trace X̂ =α

‖·‖∗ = Schatten 1-norm; �·�r = best rank-r approximation

Sources: Nyström 1930; Williams & Seeger 2001; Drineas & Mahoney 2005; Woolfe et al. 2008; Clarkson & Woodruff 2009; Halko et
al. 2009; Gittens 2011, 2013; Tropp et al. 2017–2021; Kueng 2018; ....
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SketchyCGM for the Model Problem
Input: Problem data; target rank r
Output: Rank-r approximate solution X̂ =VΛV ∗ ∈α∆n in factored form

1 function SKETCHYCGM
2 SKETCH.INIT(n,r ) . Initialize sketch to zero
3 z ← 0d

4 for t ← 0,1,2,3, . . . do
5 η← 2/(t +2)
6 u ← AppMinEvec(A ∗(∇ f (z)))
7 h ←A (−αuu∗)
8 z ← (1−η)z +ηh
9 SKETCH.CGMUPDATE(−pαu,η) . Update sketch of X

10 (V ,Λ) ← SKETCH.RECONSTRUCT( ) . Approx. eigendecomp of X
11 Λ←Λ+ r −1(α− traceΛ)Ir . Shift X̂ to fix trace
12 return (V ,Λ)

Source: Yurtsever et al. 2017.
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Methods for SKETCH Object

1 function SKETCH.INIT(n, r ) . Rank-r approx of n ×n psd matrix
2 k ← 2r
3 Ω← randn(C,n,k)
4 Y ← zeros(n,k)

5 function SKETCH.CGMUPDATE(u, η)
6 Y ← (1−η)Y +ηu(u∗Ω) . Average uu∗ into sketch

7 function SKETCH.RECONSTRUCT( )
8 C ← chol(Ω∗Y ) . Cholesky decomposition
9 Z ← Y /C . Solve least-squares problems

10 (U ,Σ,∼) ← svds(Z ,r ) . Compute r -truncated SVD
11 return (U , Σ2) . Return eigenvalue factorization

Comment: Modifications required for numerical stability

Sources: Yurtsever et al. 2017; Tropp et al. 2017.
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Less Filling / Great Taste

Theorem 4 (SKETCHYCGM). SKETCHYCGM has the following properties (whp):

§ SKETCHYCGM computes a rank-r approximation of a solution of (SDP-nl)

§ SKETCHYCGM has optimal storageΘ(d + r n)

§ Assume (SDP-nl) has smoothness + stability + rank X ?≤ r

§ Then SKETCHYCGM produces rank-r iterates X̂ t that satisfy

EΩ‖X̂ t −X ?‖∗ ³ EΩ f (A X̂ t )− f (A X ?) = O (t−1)

§ To achieve ε-suboptimal solution, SKETCHYCGM has arithmetic costs

1. O (r 2n +ε−1(d + r n)+ε−3/2n logn) flops
2. O (ε−3/2 logn) applications of theA ∗ and∇ f primitives
3. O (ε−1) applications of theA primitive

Source: Yurtsever et al. 2017.
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Performance of.
SketchyCGM
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Fourier Ptychography, Redux

Wirtinger Flow Burer–Monteiro SKETCHYCGM

29 illuminations; 802 pixels each; d = 1.86 ·105 measurements
image size n = 1602 pixels; matrix variable n2 = 6.55 ·108

SKETCHYCGM storage (rank r = 1): 6.53 ·105

quadratic loss

Sources: Burer & Monteiro 2003; Edidin et al. 2009; Chai et al. 2011; Candès et al. 2014; Horstmeyer et al. 2015; Yurtsever et al. 2017.
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Fourier Ptychography: Malaria Phase Gradients

∆x

∆y

Wirtinger Flow Burer–Monteiro SKETCHYCGM
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Linear SDP:.
MaxCut

Joel A. Tropp (Caltech), Sketchy Decisions, Simons Algorithms & Geometry Seminar, Cyberspace, 22 January 2021 34



The Most Unkindest Cut of All

§ Let L ∈Hn be the (psd) Laplacian of a graph with n vertices and m edges
§ Calculate the maximum cut via a mathematical program:

maximize xTLx subject to x ∈ {±1}n (MAXCUT)

§ NP-hard, so relax to an SDP via the map x xT 7→ X :

maximize trace(LX )

subject to diag(X ) = 1, X psd
(MAXCUT SDP)

§ Report signum of maximum eigenvector of solution (or randomly round)

§ Provably good idea, but...
§ Laplacian L of a graph with m edges hasΘ(m) nonzeros
§ SDP decision variable X hasΘ(n2) degrees of freedom
§ Storage! Communication! Computation!

Sources: Delorme & Poljak 1993; Goemans & Williamson 1996.
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SDP with.
Optimal Storage

Joel A. Tropp (Caltech), Sketchy Decisions, Simons Algorithms & Geometry Seminar, Cyberspace, 22 January 2021 36



Model Problem: Trace-Constrained SDP

minimize trace(C X )

subject to A X = b

X ∈α∆n

(SDP)

§ C ∈Hn and b ∈Rd

§ A :Hn →Rd is a real-linear map
§ ∆n := {X ∈H+

n : trace X = 1}

§ α> 0 controls trace (and sometimes modulates rank)

§ In many applications, d ¿ n2 and all solutions have low rank
§ Goal: Produce a rank-r approximation to a solution of (SDP)

Hn = n ×n Hermitian matrices; H+
n = n ×n psd matrices
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Approximate Solutions

§ Let X ? be an optimal point of (SDP)
§ Algorithms produce a semifeasible matrix X ∈α∆n that is ε-suboptimal:

‖A X −b‖ ≤ ε and trace(C X )− trace(C X ?) ≤ ε

§ Stability: Suboptimality controls distance to (unique) optimum:

max
{‖A X −b‖ , trace(C X )− trace(C X ?)

} ≥ κ‖X −X ?‖∗

§ Assume stability to simplify guarantees

‖·‖ = `2 norm
‖·‖∗ = Schatten 1-norm
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Low-Rank Approximation of a Solution

§ NP-hard to solve (SDP) + rank X ≤ r

§ Legerdemain: Find a rank-r approximation X̂ of a solution to (SDP):

‖X̂ −X ?‖∗ ≤ const · ‖X ?−�X ?�r‖∗
§ In particular, if rank(X ?) ≤ r , then X̂ = X ?

§ Goal: Compute a rank-r approximation X̂ to an ε-suboptimal point X ε:

‖X̂ −X ε‖∗ ≤ const · ‖X ε−�X ε�r‖∗
§ Assume stability + rank(X ?) ≤ r

§ Conclude

‖X̂ −X ?‖∗ ³ max
{‖A X̂ −b‖ , trace(C X̂ )− trace(C X ?)

} ³ ε

�·�r = a best rank-r approximation with respect to ‖·‖∗

Joel A. Tropp (Caltech), Sketchy Decisions, Simons Algorithms & Geometry Seminar, Cyberspace, 22 January 2021 39



Optimal Storage

What kind of storage bounds can we hope for?

§ Assume black-box implementation of operations with objective + constraint:

u 7→C u u 7→A (uu∗) (u, z) 7→ (A ∗z)u

Cn →Cn Cn →Rd Cn ×Rd →Cn

§ NeedΘ(n +d) storage for output of black-box operations

§ NeedΘ(r n) storage for rank-r approximate solution of model problem

Definition. An algorithm for the trace-constrained SDP (SDP) has
optimal storage if its working storage isΘ(d + r n) rather thanΘ(n2).

Source: Yurtsever et al. 2017; Cevher et al. 2017.
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The Challenge

§ Some algorithms provably solve the trace-constrained SDP...

§ Some algorithms have optimal storage guarantees...

Is there a practical algorithm
that provably computes

a low-rank approximation
to a solution of the trace-constrained SDP

+ has optimal storage guarantees?
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SketchyHCGM
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Smoothing + Homotopy

minimize fβ(X ) := trace(C X )+ β

2 ‖A X −b‖2

subject to X ∈α∆n

(SDP-β)

§ Objective is convex and continuously differentiable
§ As β→∞, the solutions of (SDP-β) converge to the solution set of (SDP)

§ Idea: Solve (SDP-β) with CGM while increasing smoothing parameter β
§ Gradient of objective and updates:

∇ fβ(X ) =C +βA ∗(A X −b)

H = arg max
Y ∈α∆n

〈
Y , −∇ fβ(X )

〉
§ Parallel with development of SKETCHYCGM from CGM

Sources: Yurtsever et al. 2018–2021.
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HCGM for Trace-Constrained SDP

Input: Problem data
Output: Approximate solution matrix X hcgm

1 function HCGM
2 X ← 0n×n . Initialize matrix variable
3 for t ← 0,1,2,3, . . . do
4 β← (t +2)1/2 and η← 2/(t +2) . Parameter schedule
5 u ← MinEvec(C +βA ∗(A X −b))
6 H ←−αuu∗ . Form update direction
7 X ← (1−η)X +ηH . Linear update to matrix variable
8 return X

State: Track state z =A X

Primitives: Access A using primitives + approximate eigenvector computation

Sources: Yurtsever et al. 2018–2021.
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STATEHCGM for Trace-Constrained SDP

Input: Problem data
Output: Approximate solution state z hcgm

1 function STATEHCGM
2 z ← 0d . Initialize state variable
3 for t ← 0,1,2,3, . . . do
4 β← (t +2)1/2 and η← 2/(t +2)
5 u ← AppMinEvec(C +βA ∗(z −b))) . RandLanczos, q = t 1/4 logn
6 . Via C and A ∗ primitives
7 h ←A (−αuu∗) . State update via A primitive
8 z ← (1−η)z +ηh . Linear update to state variable
9 return z

Benefit: Only uses storageΘ(n +d)!
Problem: Where do we get X hcgm? Maintain a sketch.
Sources: Yurtsever et al. 2018–2021.
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SKETCHYHCGM for Trace-Constrained SDP

Input: Problem data
Output: Rank-r approximate solution X̂ =VΛV ∗ ∈α∆n in factored form

1 function SKETCHYHCGM
2 SKETCH.INIT(n,r ) . Initialize sketch to zero
3 z ← 0d

4 for t ← 0,1,2,3, . . . do
5 β← (t +2)1/2 and η← 2/(t +2)
6 u ← AppMinEvec(C +βA ∗(z −b)))
7 h ←A (−αuu∗)
8 z ← (1−η)z +ηh
9 SKETCH.CGMUPDATE(−pαu,η) . Update sketch of X

10 (V ,Λ) ← SKETCH.RECONSTRUCT( ) . Approx. eigendecomp of X
11 Λ←Λ+ r −1(α− traceΛ)Ir . Shift X̂ to fix trace
12 return (V ,Λ)

Sources: Yurtsever et al. 2018–2021.
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Less Filling / Great Taste

Theorem 5 (SKETCHYHCGM). SKETCHYHCGM has the following properties (whp):

§ SKETCHYHCGM computes a rank-r approximation of a solution of (SDP)

§ SKETCHYHCGM has optimal storageΘ(d + r n)

§ Assume (SDP) has stability + rank X ?≤ r

§ Then SKETCHYHCGM produces rank-r iterates X̂ t that satisfy

EΩ‖X̂ t −X ?‖∗ ³ EΩmax
{‖A X̂ t −b‖ , trace(C X̂ t )−trace(C X ?)

} = O (t−1/2)

§ To achieve an ε-suboptimal solution, SKETCHYHCGM has arithmetic costs

1. O (ε−2(d + r n)+ε−5/2n logn) flops
2. O (ε−5/2 logn) applications of primitivesC andA ∗

3. O (ε−2) applications of primitiveA

Source: Yurtsever et al. 2018–2021.
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SKETCHYCGAL for Trace-Constrained SDP

§ Problem: O (t−1/2) convergence is probably optimal, but still impractical

§ Solution: Augmented Lagrangians!

maximizey minimizeX trace(C X )+〈y , A X −b〉+ β

2 ‖A X −b‖2

subject to X ∈α∆n, y ∈Rd

§ CGAL: Primal update via CGM; dual update via gradient step; homotopy on β
§ SKETCHYCGAL: CGAL + state variable + sketching

§ Same theoretical guarantee as SKETCHYHCGM
§ Empirical convergence O (t−1)

§ Extensions: No trace constraint; affine cone constraints; other matrix sets; ...

Sources: Yurtsever et al. 2018–2021.
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SketchyCGAL...SketchyCGAL...
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MaxCut for Gset / DIMACS10: Scalability (R = 10)
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MaxCut for G67: Solution Trajectories

G67 graph = 10 000 vertices; 20 000 edges; dashes = cut from SDPT3
SKETCHYCGAL (rank = sketch size = R); eigenvector rounding

[l] objective residual; [c] infeasibility; [r] cut value versus [t] iteration; [b] time
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Burer–Monteiro is not Storage-Optimal

MaxCut; dimension n = 100; unique solution; solution rank 1

Algorithm trajectories: Typical instance
.

manopt (R = 2) fails in 77% to 90% of trials
SKETCHYCGAL (R = 2) solves all instances

Source: Boumal et al. 2014; Waldspurger & Waters 2018.
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Linear Phase Retrieval: Scalability

minimize trace X subject to A X = b, trace X ≤α, X psd

Random instances (rank = 1), measurements d = 12n, bound α= 3n

CGAL = no sketching; THINCGAL = CGAL + thin SVD update
SKETCHYCGAL (sketch size R = 5); relative errors = 10−2
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Fourier Ptychography (Simulated)
t = 10 (69 sec) t = 100 (1 063 sec)

n = 3202 pixels
225 illuminations

642 pixels each
.

n2 = 1.05×1010 vars
d = 921600 eqns

t = 1000 (18 398 sec) t = 10000 (209 879 sec) original
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SDP Relaxations of QAP

minimize trace(AΠBΠ∗) (QAP)

subject to Π is an n×n permutation matrix

minimize trace[(B ⊗ A)Y] (QAP-SDP)

subject to trace1(Y) = I, trace2(Y) = I, G (Y) ≥ 0

vec(P ) = diag(Y), P 1 = 1, 1∗P = 1∗, P ≥ 0[
1 vec(P )∗

vec(P ) Y

]
< 0, traceY= n

SDP dimension n = n2; structure constraints d = n2

Number of positivity constraints modulated byG

Sources: Zhou et al. 1997; Huang et al. 2014; Bravo-Ferreira et al. 2017; Yurtsever et al. 2018–2021.
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QAP Relaxations: Solution Quality

.

Sources: Zaslavskiy et al. 2009; Bravo-Ferreira et al. 2018; Yurtsever et al. 2018–2021.
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To learn more...

E-mail: jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/∼jtropp
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